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A general finite-temperature exact-exchange (EXX) formalism derived within the framework of finite-
temperature density functional theory for grand canonical ensembles is presented. Based on this formalism a
finite-temperature EXX method for solids using plane-wave basis sets is presented. The method is generally
applicable, i.e., applicable to insulators, semiconductors, or metals and enables the investigation of temperature
effects. More important, however, is that the finite-temperature EXX method enables an EXX treatment of
metals by introducing a physically motivated Fermi broadening technique. We tested the method by applying
it to sodium, magnesium, and aluminum and compare EXX and LDA (local density approximation) band
structures as well as the density of states for the three metals. Differences between LDA and EXX band
structures are negligible up to the Fermi level. Above the Fermi level, however, differences between LDA and
EXX band structures of magnitudes of 1-2 eV start to build up for energetically higher bands. The magnitude
of these differences is of the same order as that of the increases in EXX band gaps compared to LDA band gaps
as they are reported for semiconductors and insulators.
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I. INTRODUCTION

A basic shortcoming of conventional density functional
methods, i.e., of Kohn-Sham (KS) methods relying on
exchange-correlation functionals within the local density ap-
proximation (LDA) (Refs. 1-3) or generalized gradient ap-
proximations (GGAs),!= is the presence of unphysical Cou-
lomb self-interactions. The Coulomb energy is defined as the
energy of the classical electrostatic interaction of the electron
density of an electronic system with itself. The Coulomb
energy therefore contains unphysical contributions from the
interaction of each electron with itself. Similarly, if the Cou-
lomb potential, the classical electrostatic potential of the
electron density, acts on an electron of the system then this
electron is subject to an interaction with itself because the
electron contributes to the electron density. This unphysical
Coulomb self-interaction is cancelled by the exchange en-
ergy and potential, respectively. In conventional KS meth-
ods, however, the Coulomb energy and potential is calcu-
lated exactly while the exchange energy and potential is
approximated. As a result the cancellation of unphysical
Coulomb self-interactions is incomplete.

The presence of unphysical Coulomb self-interactions has
severe consequences. Conventional exchange-correlation po-
tentials are not attractive enough and, in finite systems, ex-
hibit the wrong asymptotic behavior.>~!! As consequence, the
simplest system, the hydrogen atom, is not treated correctly,
the additional electron in small anions often is erroneously
unbound.'?"'* Moreover, the KS orbital and eigenvalue spec-
trum of conventional KS methods is qualitatively
wrong.!=12-15 In finite systems the energetical difference of
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the highest occupied molecular orbital (HOMO) to the low-
est unoccupied molecular orbital (LUMO) is too small and
no Rydberg series exist in eigenvalue spectra. In periodic
solids band structures are affected. Conventional KS band
gaps of semiconductors are much lower than experimental
ones. In how far this is due to the principle difference be-
tween the KS band gap and the true quasiparticle band gap
and in how far this is due to Coulomb self-interactions is an
open question.'*2” However, conventional KS band struc-
tures may even be qualitatively wrong exhibiting metallic
instead of semiconductor characteristics, like, e.g., in the
case of germanium.?®

Exact-exchange (EXX) KS methods?®~% solve this basic
problem because they treat exactly the exchange energy and
the local multiplicative KS exchange potential. The latter
must not be confused with the nonlocal Hartree-Fock ex-
change potential. Hartree-Fock methods lead to occupied or-
bitals that are free of Coulomb self-interactions, but to unoc-
cupied orbitals that are not. These unoccupied orbitals have
little physical meaning. In EXX methods qualitatively cor-
rect orbital and eigenvalue spectra are obtained. In finite sys-
tems larger HOMO LUMO gaps emerge and Rydberg series
are present. In solids qualitatively correct band structures are
obtained.?8:33:37:49-51.59.60 T small and medium band gap
semiconductors EXX band gaps are close to the experimen-
tal ones. Whether this agreement between KS and true qua-
siparticle band gaps would become worse if also the exact
correlation potential could be employed is an open
question.'®?7 In present EXX methods correlation is either
neglected or treated via conventional LDA or GGA function-
als. It turns out that the choice for the conventional correla-
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tion potential or even its complete neglect has little effect on
the KS eigenvalue spectra.

KS orbitals and eigenvalues are the starting point for
methods like the GW method to calculate quasiparticle band
structures®'61=3 or for methods based on time-dependent
density functional theory in the response regime to treat op-
tical properties.®*% KS methods providing qualitatively cor-
rect band structures therefore are of importance. EXX meth-
ods are such methods.

Another advantage of EXX methods is that treating ex-
change energy and potential exactly represents a step in a
systematical improvement of density functional methods.
The exchange energy is the largest fraction of the exchange-
correlation energy and in contrast to conventional KS meth-
ods no longer needs to be approximated. Conventional KS
methods strongly rely on error cancellations between ex-
change and correlation.'= Such error cancellations obviously
are no longer present if exchange is treated exactly. How-
ever, such error cancellations, in any case, can only be ex-
ploited for exchange-correlation energies but not for
exchange-correlation potentials. For example, the long-range
behavior of the effective KS potential is determined exclu-
sively by the exchange potential which exhibits a long-range
(~1/r)-behavior with r denoting the distance from the elec-
tronic system. The LDA or GGA correlation potentials like
the true correlation potential are short-ranged and also the
LDA or GGA exchange potentials are short-ranged. Thus the
correct long-range (—1/r)-behavior of the exchange potential
can never occur due to error cancellations between conven-
tional exchange and correlation potentials.

EXX methods have been introduced for atoms,
solids?®3-37 as well as molecules.***! EXX methods for
molecules based on Gaussian basis sets are numerically
demanding?0:43:43:66-68 and only recently a numerically stable
method was introduced.’” EXX methods for solids based on
plane-wave basis sets,?83%37 on the other hand, turn out to be
numerically stable provided the plane-wave cutoffs for the
representation of the orbitals and of the exchange potential
are well balanced. However, so far only EXX methods for
the limit of zero temperature have been developed.

In this work we present a general finite-temperature EXX
formalism within the framework of finite-temperature den-
sity functional theory for grand canonical ensembles.®® The
basic formalism is valid and applicable for finite as well as
infinite systems. In this work we then focus on a finite-
temperature EXX method for solids based on plane-wave
basis sets and test it by applying it to simple metals. For the
treatment of periodic solids we have to consider a fixed elec-
tron number in order to guarantee charge neutrality of the
system, i.e., we cannot freely choose the chemical potential
of the grand canonical ensemble but we have to set the
chemical potential to a value leading to the required number
of electrons. This means we effectively switch from a grand
canonical ensemble to a canonical ensemble.

The motivation for this work is twofold. On the one hand,
this opens the route to investigate temperature effects within
an EXX framework. On the other hand, a finite-temperature
approach may be used as technical procedure in the k-point
sampling in a KS treatment of metals. In order to avoid the
use of prohibitively large numbers of k-points “band broad-
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ening” schemes are often used in the KS treatment of metals.
In EXX methods the k-point sampling is especially critical
because in the construction of the exact exchange potential
the KS response function is required which contains terms
with differences of occupied and unoccupied KS eigenvalues
in the denominator. If KS eigenvalues of a k point at the
Fermi level are degenerate this may lead to singularities. By
using a “band broadening” scheme that has physical meaning
such singularities are avoided.

This work is organized as follows. In Sec. II the EXX
formalism is generalized to finite temperature by deriving an
EXX formalism within the general framework of finite-
temperature density functional theory for grand canonical
ensembles.®” In Sec. III the implementation and computa-
tional details are briefly described. In Sec. IV results of ap-
plying the new method to the metals sodium, magnesium,
and aluminum are presented. Finally, Sec. V contains con-
cluding remarks.

II. FINITE-TEMPERATURE EXX FORMALISM
A. Basic formalism and definition of energy functionals

An electronic system at finite temperature that can inter-
change electrons with its environment is described by the

density matrix r if treated as grand canonical ensemble.

v,T,n

The density matrix I" among all density matrices [ is the

v, T,
one that minimizes the grand potential Q[I'] (Ref. 1)

Q[ =TrI[H+kTIn T - uN] (1)
according to
O, 7, =min Q[ (2)
r

for the Hamiltonian operator
H=T+V,, +0, (3)

the temperature 7, and the chemical potential . In Eq. (3), T

and XA/M designate the operators of the kinetic energy and the
electron-electron interaction energy, respectively, while 0 de-
notes the operator corresponding to a local multiplicative
external potential v(r), usually the potential of the nuclei. In

Eq. (1), N denotes the number operator and k the Boltzmann
constant. The grand potentials Q[f] are functionals of the

density matrices [, the minimum Qu,r, . of the grand poten-
tial given in Eq. (2) corresponds to the minimizing density
matrix FU,T,#, ie.,

Qv,T,,u, = Q[fv,T,y]~ (4)

The minimizing density matrix qu’T# is given by

[Wn X Wyl

Zv,T,,u,

Forp=> S expl(— /KT)(Ey,, — uN)]
N n

()

with the grand partition function
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Zyrp= 2 2 expl(= VKT)(Ey,, — uN)]. (6)
N n

In Egs. (5) and (6) Wy, denotes the nth N-electron eigenstate
of the Hamiltonian operator (3) and Ey,, the corresponding
energy eigenvalue. Strictly speaking, it is not correct to
speak of one Hamiltonian operator (3) because for each par-
ticle number N there is a different Hamiltonian operator.
Therefore, a reference to the Hamilton operator (3) shall al-
ways imply a reference to the appropriate N-electron Hamil-
ton operators. This also holds true in formulas like those in
Eqgs. (1) and (2) where traces of Hamiltonian operators with
density matrices containing contributions with different par-
ticle numbers occur.

Following the constrained-search formulation of density
functional theory!’%7! we now rewrite the minimization (2),

Q, 1., = min{min{Tr F[A + kT In T - uNT}}

PTp

=min{ min{Tr [T + Vee +kTIn ']}
P T=p

+ J drfv(r) - u]p(r)

=min{F[p,T] + f drlv(r) - /-L]P(l')} (7)
P

with the Hohenberg-Kohn functional F[p,T] as defined for
grand canonical ensembles,” i.e., with

Flp.T]=min{Tr F[T+ V,, + kT InTJ}. (8)
I'—p

In the constrained-search formulation the original minimiza-
tion in Eq. (2) is split into two minimizations, an inner one
over all density matrices that yield a certain electron density
p and an outer one over all electron densities p. Because the

expectation values of the number operator N and operator 0
corresponding to the external potential depend exclusively
on the electron density, the terms containing these two op-
erators can be taken out of the inner minimization. The mini-
mizing density matrix of the remaining inner minimization in
Eq. (7), i.e., the minimizing density matrix of Eq. (8) defin-
ing the Hohenberg-Kohn functional depends on the electron
density p, i.e., is a functional I'[p,T] of p. The Hohenberg-
Kohn functional F[p,T] is given by

Flp.T1=Tr [[p, T[T+ V,, + kT In I[p,T]] )

in terms of the minimizing density matrices I'[p, 7], i.e., in
terms of the functionals I'[p,T]. The electron density that
minimizes the outer minimization in Eq. (7) shall be denoted
py,1,,- The minimizing density matrix fv,T,M is obtained as
functional of the minimizing electron density p, 7,
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fU,T,M: I:[pv,T,,w T] (10)

The Euler equation that corresponds to the outer minimiza-
tion in Eq. (7) and that determines the minimizing electron
density p, 7, reads as

OF[p,T]
Ip(r)
Next we introduce the KS system, a model system of

fictitious noninteracting electrons with the same electron
density as the real electron system. The KS Hamiltonian op-

=—v(r) + u. (11)

P=pPy T, “w

erator HXS is given by

HS=T+7,. (12)
Analogously to Egs. (2) and (7)—(9) we introduce a minimal
KS grand potential QfST .. by the constrained-search minimi-
zation

QKS

o7, =min Tr T[HSS + kT In T = uN]

r

= min{ Tlp]+ f drfv(r) - ,U«]P(r)} (13)

p

with the functional T,[p,T] defined by

T,[p.7]=min{Tr [[T + kT In TT}. (14)

I'—p

In contrast to the zero temperature case, the functional
T p,T] not only contains a kinetic energy contribution, but
in addition an entropy term, which we shall refer to as non-
interacting entropy term. The minimizing density matrix ob-
tained in the minimization (14) is a functional fKS[p,T] of
the electron density, similarly as the minimizing density ma-
trix f‘[p,T] is a functional of p resulting from minimization
(8). The functional T,[p,T] is given by

Tlp.T1=Tr T¥[p, TI[T+ kT In T¥5[p, 7] (15)

in terms of the minimizing density matrices ['*[p,T], i.e., in
terms of the functionals I'®5[p,T]. The minimizing density
matrix corresponding to the first line of Eq. (13) shall be

denoted as f‘fST > the minimizing KS electron density cor-

responding to the second line of Eq. (13) as vafT,/r The
former can be obtained as functional

~KS
FUS,T,,LL

=TKS[p%S, 1] (16)

vl

fS’Tyﬂ in analogy to Eq.

(10). Analogously to Eq. (11) the Euler equation that corre-
sponds to the minimization of the second line of Eq. (13) and
that determines the minimizing KS electron density pfS!T’ “
assumes the form '

of the minimizing electron density p

oT[p.T]
op(r) Ks

P=Py T

=_vs(r)+M' (17)
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A crucial property of the KS system is that, by definition,
it has the same electron density as the real electron system,
i.e.,

Py = Po.t = Po- (18)

For simplicity we omit the subscripts v,7,u or v, T, u and
plainly write p, for the electron density of the real electron
system and the KS electron system. If we now subtract the
two Euler Egs. (11) and (17) from each other, rearrange, and
take into account Eq. (18) then we obtain an equation for the
KS potential v,

US(I') _ U(l’) + 5(F[p7 T] - Ts[p’ T]) ) (19)
p(r) p=py

The difference Flp,T]-T,[p,T] contained in Eq. (19) is re-
written by adding and subtracting Tr [55[p, T]V,,

Flp,T]-T,[p,T]=Tr T%[p, 71V, + (F[p.T] - T,[p.T]
= Tr fKS[p’ T] ‘/}ee)
=Ulpl+E[p. T+ E[p.T] (20)

with the sum of Coulomb and exchange energy given by

Ulpl+E[p.T)=Tr T5[p, 11V, (21)

and with the correlation energy given by
E[lp.T]=Flp.T]- T[p.T]-Tr I[p, TV,
=Tr [[p, T[T+ V,,+ kT In [[p,T]]

—Tr I8 p, T[T + V,, + kT In T p, TT].
(22)

The sum of the Coulomb energy U[p] and the exchange
energy E[p,T| according to Eq. (21) is defined as the
electron-electron interaction energy the KS system would
have if there were an electron-electron interaction in the KS
system. Note that in addition to a kinetic and an electron-
electron interaction contribution the correlation energy
E_.[p,T] also contains an entropy contribution that is absent
in standard zero-temperature DFT. The corresponding Cou-
lomb (Hartree), exchange and correlation potentials, vy, v,,
and v,. are defined as the functional derivatives of the energy
functionals with respect to the electron density, respectively.
With these potentials the KS potential of Eq. (19) can be
expressed in the usual form as

v,(r) =v(r) +vy(lpolir) + v [P0, T151) + V([ po, T]:1).
(23)

Carrying out KS calculations within the framework of
DFT for grand canonical ensembles requires either to ap-
proximate or to treat exactly the functionals for the Cou-
lomb, exchange and correlation energies and potentials, as in
standard DFT. In this work we present an approach to treat
exchange energy and potential in addition to Coulomb en-
ergy and potential exactly while the correlation energy and
potential is either neglected or treated via standard approxi-
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mate correlation functionals. To this end we express the KS
. . AKS .
density matrix FUA_,T, ., in analogy to Eq. (5) as

A exp[(— 1/kT)(EXS - uN)]
L= 2 5 Dy N Dy,
’ N n ZUS,T,,u
(24)

with the KS grand partition function

Z{)(:T# - 2 E exp[(— l/kT)(Egil - MN)] (25)
N

n

In Egs. (24) and (25) @y, denotes the nth N-electron eigen-
state of the KS Hamiltonian operator (12) and Eﬁsn the cor-
responding energy eigenvalue.

Because the KS Hamiltonian operator (12) is a simple
sum of one-electron operators, its eigenstates ®y, are Slater
determinants constructed from KS orbitals ¢;, which obey

the KS equation

{— %V2+vs(r)} ¢ir) = &;d(r) (26)

with a KS potential v, given by Eq. (23). The orbitals ¢, are
spin orbitals, i.e., they shall be two-dimensional spinors rep-
resenting either a- or B-spin orbitals. The energies Eﬁsn are
the sum of the KS eigenvalues g; of the orbitals constructing
the KS determinants @y ,, respectively. The exchange energy
can be deduced from Eq. (21) by inserting the KS density

matrix ffST - Before doing this we consider the simpler case
of calculating the electron density py. It is given by

po(r) = py_r1,(r) =Tr FffT,,ﬁ(r)

—1/kT)(EXS — uN
-3 3 SV g 5wy,
N n

v .

=2 /i4](0) () (27)

with the occupation numbers f; of the KS orbitals given by

1

=15 G (28)

fi
as derived in Ref. 72 and in the Appendix. The summation
over the index i in Eq. (27) runs over all spin orbitals. For the
last line of Eq. (27) we used that

(Oy APy, = 2 ¢l(r)i(r). (29)

iedy,

The summation X;_g ., shall run over all spin orbitals con-
tained in the KS determinant ® ., The sum of Coulomb and
exchange energy, Eq. (21), leads to
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U+E =Tr %S, V

UA,,T,,u, ee

=%E

expl (- I/KT)(EYS, — pN)]

<(DN,n| ‘A/ee|q)N,n> .

foTﬂM
(30)
Taking into account that
(PulVeel Oy = (112) X X [CGjligy = Gfljin]
iedy, jedy,
€2V

with  (ij|k€)=[drdr'($](0) ] (x") by (r) be(x)/Ir—r'| we
can express the sum of Coulomb and exchange energy in
terms of KS orbitals and occupation numbers g;; for pairs of
orbitals as

U+E.=(2)2 X glGilif) - Gilin].— (32)
i

The occurrence of occupation numbers g;; for pairs of orbit-
als in Eq. (32) instead of the simple occupation numbers f; is
a consequence of the fact that the operator of the electron-
electron interaction is a two-particle operator. For calculating
the Coulomb and exchange energy with Eq. (32) we need an
expression for occupation numbers g;;. It turns out that the
factors g;; are simply given by the product of the factors f;
and f; of the Fermi distribution (28), that is g;;=f;f;. The
relation between g;; and f; and f; is derived in the Appendix
for i # j. For g;; an arbitrary value can be chosen because the
difference [(ij|ij)—(ij|ji)] equals zero for i=j. We choose
gii=/:f; and keep the term in the summation (32) because it
enables us to define separable Coulomb and exchange ener-
gies U and E, in Egs. (A4)-(A6) later on.

Note that, as mentioned in the Introduction, electronic
systems described in the framework of a grand canonical
ensemble are characterized by the external potential v, the
temperature 7, and the chemical potential u or alternatively,
invoking the generalization of the Hohenberg-Kohn theorem
to grand canonical ensembles, by the electron density p, the
temperature 7, and the chemical potential w. The particle
number is a function of v, 7, and u. In the treatment of
periodic solids, however, usually the particle number is kept
fixed in order to obey the requirement of charge neutrality of
the solid. In this case the electronic system is characterized
by v, T, and N and the chemical potential w is a function of
the latter quantities, i.e., the chemical potential has to assume
a value such that the given particle number is obtained, that
is the sum of all occupation numbers must equal the particle
number N. In this case, the electronic system is characterized
by the temperature 7" and the electron density pg, invoking
the finite-temperature generalization of the Hohenberg-Kohn
theorem and using that the electron density p, determines the
electron number N. By keeping the electron number fixed a
canonical instead of a grand canonical ensemble is consid-
ered.

B. Coulomb and exchange potential

With expressions for the Coulomb and the exchange en-
ergy at hand that can be straightforwardly evaluated in a KS
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calculation we now consider the evaluation of the Coulomb
potential and the exchange potential. The latter are defined as
functional derivatives of the Coulomb and exchange energies
with respect to the electron density. Taking this functional
derivative is trivial for the Coulomb energy because it is
given in terms of the electron density, see Eq. (A5) of the
Appendix. The resulting Coulomb potential reads as

vy(r) = f dr’% (33)

and can be evaluated as in the zero-temperature KS formal-
ism except that the occupation numbers f; have to be taken
into account in the construction of the electron density py,
see Eq. (27).

The exchange potential is not directly accessible because
the exchange energy is only known in terms of the KS orbit-
als and the occupation numbers but not explicitly in terms of
the electron density. Because the KS orbitals and the occu-
pation numbers are functionals of the electron density the
exchange energy is implicitly a functional of the electron
density. However, the dependence of the KS orbitals and the
occupation numbers on the electron density is unknown and
therefore taking the functional derivative of the exchange
energy with respect to the electron density simply via the
chain rule is not possible. Instead, we generalize the ap-
proach of the ground state EXX formalism,'>3%333* and take
the derivative of the exchange energy with respect to the
effective KS potential v, in two different ways:

f /|: 6Ex 5p0(r,):|
dr'| == PO 2
Ipo(r') dv(r)
OE, S(r') } [5@ o, ]
=D [ ar| - e S L
Ef ' [5¢,-(r'> w00 " 2 g 0
(34)
The derivative Spy(r’)/ dv,(r) of the electron density with

respect to the KS potential is the KS response function
X,(r",r), ie.,

_ Ipo(r)
 ou,(r)

X,(r,r") . (35)

The functional derivative JE,/ 8py(r’) is the exchange poten-
tial v,(r'), the quantity we want to determine. The right-hand
side of Eq. (34) shall be abbreviated by #(r). If we further-
more use that the KS response function X is symmetric in its
arguments, see Egs. (37)—(46) below, then Eq. (34) assumes
the form

f dr'X,(r,r" v, (r") =1(r). (36)
known from the ground state EXX formalism.?®37
Similar as in the ground state EXX formalism!'>3%3* stan-

dard perturbation theory yields
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T -i- ! !
X,(r,e') = fi > [ $.(0)¢,(n) ¢ () $(r') + c.c}

i Ei—&j

Ff;
du(r’)

+ E ¢! (r) ¢i(x) (37)

and

ANL T
0)-S S [<¢ilvx [£)61(0)i(r) C.C.]

i j# Ei—&j

+2 (oM —— y ( ) (38)

with the nonlocal exchange operator 132”‘ defined by its ker-
nel

2ﬁ¢,(r)¢ (r' )'

vy () [r—r’|

(39)

Compared to the ground state EXX formalism additional
terms occur in Egs. (37) and (38), as well as Eq. (34),
namely, those terms that contain derivatives Jf;/ dv,(r) of the
occupation numbers f; with respect to the KS potential v,.
Taking into account Eq. (28), these derivatives are given by

Sf; (i WIKT [& S

Sv,(r) - KT P*T L 12| Sv,(r) B Sv,(r) ] (40)

The second term in the square brackets of Eq. (40) arises
because we consider the case of fixed particle number N. In
order to calculate this term we use that the condition of a
fixed particle number leads to the condition

S
g&ﬂfo (41)

for the derivatives of the occupation numbers with respect to
the KS potential. Inserting Eq. (40) into Eq. (41) after some
algebra leads to the expression

e =TT 00
S il
p [e(si—/.L)/kT+ 1]2

e(s,——;l,)/kT 581'

(42)

for the derivative of the chemical potential with respect to
the KS potential.

The derivative Jg;/ Sv,(r) according to standard perturba-
tion theory is given by

T = ¢ (1) p(x). (43)

Using furthermore

(e i—)/ kT

m =fi(1-f) (44)

we can express Egs. (40) and (42) in the form
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of; _ fill=f)| .+
Sv,(r) == kT & (1')¢i(1‘) - Su,(r) (45)
and
5 2 f(1=£) ] (X))
wo
Sv,(r) - (46)

2 f0-1)

Based on Eq. (45) and (46) those terms in Egs. (37) and (38)
that are not present in the ground state EXX formalism, i.e.,
the terms arising due to finite temperature, can be evaluated.
In the limit of zero temperature the products f;(1—f;) vanish
because the occupation numbers equal zero or one and the
additional terms due to finite temperature vanish in Egs. (37)
and (38) and the ground state EXX formalism is recovered.

III. IMPLEMENTATION AND COMPUTATIONAL
DETAILS

In this section, first, an overview of the implementation of
the above finite-temperature EXX approach is presented and
then computational details and parameters are listed. The
EXX formalism for finite temperatures was implemented
within an existing plane-wave Kohn-Sham code for periodic
systems that contains a zero-temperature EXX option. The
SCF (self-consistent field) cycle of the finite-temperature
EXX implementation consists of the following steps, some
of which are embedded in loops over the k points:

(i) From the effective KS potential v,(r), see Eq. (23), of
the previous SCF cycle the KS Hamiltonian matrices are
constructed and for each k point the corresponding eigenvec-
tors and eigenvalues are determined.

(ii) From the eigenvalues, the number of electrons, and
the chosen temperature the Fermi energy, i.e., the chemical
potential w and, subsequently, the occupation numbers f; are
determined by a bisection algorithm which is carried out
until the sum over all occupation numbers equals the number
of electrons roughly within machine precision. In this step, in
principle, all eigenvalues have to be taken into account.
However, for a reasonable plane-wave cutoff and tempera-
ture the vast majority of bands has occupation numbers close
to zero. In order to save computational effort later on, a
number of active bands is specified. The number of active
bands has to comprise all bands with occupation numbers
that differ from zero by a significant amount. For the simple
metals considered here and the chosen temperature of 293 K
about three to ten bands in addition to the bands that would
be occupied at zero temperature were specified as active
bands. The Fermi energy then is determined only with eigen-
values of the active bands and only for the latter fractional
occupation numbers are determined. For the remaining “in-
active” bands the occupation numbers are set to zero. In this
procedure, if necessary, the number of active bands for a k
point is increased such that degenerate or almost degenerate
bands are all active if one of the degenerate bands initially
turns out to be active. This step is crucial in order to guar-
antee that no symmetries of the system are destroyed.
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TABLE I. Key calculational parameters for sodium, magnesium
and aluminum: cutoff radii r, (atomic units) of s-, p- and d-orbitals
that were used for the construction of pseudopotentials and the used
experimental lattice constants a (nm) (Ref. 75).

Fe
(a.u)

a
Atom s P d (nm)
Na 3.3 4.0 4.0 0.42906
Mg 1.9 2.3 2.3 0.32094
Al 1.9 2.3 2.3 0.40496

(iii) From the occupation numbers, the eigenstates, and
the eigenvalues the electron density p,, given in Eq. (37),
and the finite-temperature KS response function X; of Eq.
(37) are constructed.

(iv) From the electron density the Hartree potential vy is
determined. Additionally, conventional correlation potentials
can be included and determined as well.

(v) Following Egs. (38)—(46), in a double loop over the k
points, the right hand side #(r) is computed from the occu-
pation numbers, the eigenstates, and the eigenvalues.

(vi) Solution of the Eq. (36), which contains the KS re-
sponse function X and the right hand side ¢, yields the exact
exchange potential v,.

Furthermore, energies like the free energy, the total elec-
tronic energy, the noninteracting kinetic energy, as well as
the Coulomb, the exchange, and the correlation energy are
determined during each of the SCF cycles. The integrable
singularities occurring in the calculation of the exchange en-
ergy were treated as described in Ref. 56.

After convergence of the SCF process band structures and
density of states (DOS) were determined on the basis of the
final effective potential v,. The DOS g(e) for an energy &
was determined via’?

fe)=—S 3

Nk 7 oV2w

}—CXP(— (82;') ) (47)

with Ny denoting the number of k points used in the deter-
mination of the DOS and o determining the half-width of the
Gaussian broadening functions in Eq. (47). Suitable values
for Ny and o are listed below. The integral [* dEf(e)g(E)
with f(g)=1/[exp(e—pu)+1] needs to yield the number of
electrons per unit cell.

For all computations presented in this work, the conver-
gence criterion for the SCF cycle was set to 10~® a.u. for all
relevant variables, i.e., for the local potential vy, the electron
density py, and the total and free energy of the system. The
norm-conserving LDA and EXX pseudopotentials employed
in this work were generated by a code of Engel”® which is
based on the Troullier-Martins scheme.” The cutoffs used
for the construction of the pseudopotentials as well as the
lattice constants of the crystals are listed in Table I. The
plane-waves cutoff was set to 40 Ry for the eigenstates and
to 20 Ry for the representation of the KS response function,
the right-hand side of the EXX equation, and the exchange
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potential. We used a regular grid of 6 X6 X 6 k points in the
SCF cycles. In the sum over state expressions (34) and (35)
for the response function and the right hand side of the EXX
equation all orbitals were included in the summation over the
indices. The effective KS potential and the band structures
were fully converged with respect to the plane-wave cutoffs
and the number of k points. Band structures obtained with
somewhat lower cutoffs (30 Ry for eigenstates and 15 Ry for
exchange potential) and somewhat less k points (5X5X 5 k
points) are indistinguishable on the scale of the figures of the
band structures that are shown below.

For the LDA correlation functional complementing the
LDA as well as the EXX exchange the parametrization of
Vosko, Wilk, and Nusair (VWN) was used.”® Note that the
LDA functional in the standard form derived for zero tem-
perature was used, however, it was evaluated for the finite-
temperature electron density occurring in the calculations.
All band structures and DOS presented later on were ob-
tained from calculations at room temperature (293 K). In
order to investigate the temperature dependence of the DOS
we also carried out calculations at lower and higher tempera-
tures. All presented band structures follow the classification
of high symmetry k-points as described for instance in
Ref. 77.

IV. APPLICATIONS: SODIUM, MAGNESIUM,
AND ALUMINUM

In order to illustrate the application of the described
finite-temperature EXX approach to metals we considered
three selected metals: the alkali metal sodium (Na), the alkali
earth metal magnesium (Mg), and aluminum (Al). We calcu-
lated band structures and density of states. For comparison,
corresponding finite-temperature LDA calculations were per-
formed. For each metal we considered the most common
phases at room temperature at experimental lattice constants
see Table I, i.e., for Na body-centered cubic (bcc), space

group no. 229, Im3m; for Mg hexagonal closest packing
(hep), space group no. 194, P6s/mmc; and for Al face-

centered cubic (fcc), space group no. 225, Fm3m.

Figures 1-3 show comparisons of the EXX and LDA
band structures for sodium, magnesium, and aluminum, re-
spectively. Below and at the Fermi level, no significant dif-
ferences between LDA and EXX band structures are ob-
served. For aluminum the band repulsions below the Fermi
level are slightly but not significantly larger (few meV) in the
EXX than in the LDA band structure. LDA and EXX bands
cross the Fermi level at almost exactly the same points in the
Brillouin zone and all occupied LDA and EXX levels are
qualitatively comparable, as expected. This similarity be-
tween LDA and EXX band structures is also observed for
insulators.?8

Above the Fermi level, in particular at higher energies,
however, significant differences between the LDA and EXX
band structures start to build up. These differences, in some
cases, can have magnitudes of 0.5 up to 2.0 eV. For instance,
consider the EXX eigenvalues close to 8 eV for the k-point
H in sodium (see Fig. 1) and for the k-point M of magne-
sium (see Fig. 2). These EXX eigenvalues are higher by
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FIG. 1. (Color online) Comparison of LDA and EXX band
structures (evaluated at room temperature) for sodium. The zero
energy level corresponds the Fermi level.

more than 1 eV compared to their LDA counterparts. At
higher energies the differences can occasionally increase up
to almost 2.0 eV, e.g., at the I' point of sodium (see Fig. 1).
We emphasize that these shifts in the energies of unoccupied
bands are of the same order as the band gap shifts observed
in semiconductors and insulators.”® We observe also that

=
/

/

3

energy [eV]
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EXX+VWN ——
hep-Mg
-10
r z M K T r A A

FIG. 2. (Color online) Comparison of LDA and EXX band
structures (evaluated at room temperature) for magnesium. The zero
energy level corresponds the Fermi level.
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FIG. 3. (Color online) Comparison of LDA and EXX band
structures (evaluated at room temperature) for aluminum. The zero
energy level corresponds the Fermi level.

band repulsions are stronger in the EXX band structures far
above the Fermi level. For instance, in aluminum, the singly
degenerated bands at the I' point between 16 and 20 eV in
the EXX case exhibit a band repulsion about 0.5 eV larger
than in the LDA case. Furthermore the positions of several
band crossings are shifted in some cases to the left and/or to
the right in the EXX band structures compared to the LDA
band structures, due to larger band repulsion in the EXX
band structures. This finding also is observed in semiconduc-
tor band structures, e.g., for germanium.28 We emphasize,
however, that the described local variations in LDA and
EXX band energies do not affect the general shape and ap-
pearance of the band structures of Na, Mg, and Al, i.e., band
ordering remains the same in LDA and EXX.

The corresponding DOS are shown in Fig. 4 for the LDA
and the EXX case of the three considered metals. Conver-
gence of the DOS with respect to Ny, was accomplished for
each of the metals with 25X 25X 25 k points and for Na
with a halfwidth of oy,=0.74 eV, for Mg with oy,
=1.04 eV and for Al with g,;=0.64 eV, respectively [see
Eq. (47)]. Up to 1.0-2.0 eV below Fermi level, the LDA and
EXX case do not show any significant differences as ex-
pected from the corresponding band structures. Around the
Fermi level and above, small differences build up due to the
exact treatment of the unoccupied states in EXX formalism.
Hereby, the EXX DOS can differ up to 3% to 5% from the
LDA DOS, consider for instance the deviation in sodium at 3
eV or in aluminum at 4 eV. In order to investigate the tem-
perature dependence of the DOS we did LDA and EXX cal-
culations for Al and Na at 100 K and at a temperature close
to the melting point (i.e., at 800 K for Al and at 350 K for
Na). As expected, the resulting DOS did not change signifi-
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FIG. 4. (Color online) Comparison of the density of states per
unit cell between sodium, magnesium and aluminum (evaluated at
room temperature for Ny=25X25X25 and on,=0.74 €V, oy,
=1.04 eV and 0,;=0.64 eV). Results for LDA and EXX are pre-
sented in each case. The zero energy level corresponds the Fermi
level.

cantly from the DOS at room temperature, i.e., changes
never exceeded 2X 107 eV.

We conclude this section by emphasizing that the effect of
the presented EXX method, compared to the LDA method
clearly does not correspond to that of a “scissors” operator.
More precisely, the observed stronger band repulsions and
the band shifts locally modify the band structures, especially
high above the Fermi level.

V. CONCLUDING REMARKS

Now having at hand a finite-temperature EXX method for
solids and, in particular, for metals it seems interesting to
investigate with the new method metals that are insuffi-
ciently described by conventional LDA or GGA method. For
example, metals having d electron shells, such as copper or
iron, so as to determine exchange effects on the copper d
bandwidth. Another example may be f-shell metals such as
any of the lanthanoids.

In a next step the finite-temperature EXX approach pre-
sented here can be combined with the magnetization-current
density functional theory of Refs. 78 and 79 in order to take
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into account spin-orbit effects, noncollinear spin, and mag-
netic effects in metals.
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APPENDIX: OCCUPATION NUMBERS

At first, we here briefly reconsider a derivation of expres-
sion (28) for the occupation numbers f; of KS orbitals in the
case of a grand canonical ensemble’? and then generalize this
derivation to the case of the occupation numbers g;; of pairs
of KS orbitals. The occupation numbers f; are given by

fi=2 E
N=1 n

exp[(= VKT)(ERS, — uN)]

KS
ZUS,T,,M
ie(DN,n
. expl (= VKT)(ERS, = uN)]
=1-2 X
N=1 n ijT,M
i$q)N,n
=1- e(l/kﬂ(si—,u)z
N=1
> exp[(= VKT)(ER;,,, — w(N + 1))]
X ZKS
n vx,T,M
iePyyg,
. expl (= VKT)(ERS, = uN)]
=1 = KDEmnY 3 —
N=2 n ZUX,T,M
iE(I)N,n
°° expl (= VKT)(ERS = uN)]
~ 1=y 3 n
N=1 n ZZIZST,U,

iedy,
=1- e(l/kT)(Si_lL)‘fi. (A1)
In the first line of Eq. (Al) we sum up the probability
weights of all KS determinants that contain the KS or-
bital ¢,. To obtain the second line of Eq. (Al) we use that
its sum is the same as one minus the sum of the probability
weights of all KS determinants that do not contain the
KS orbital ¢, For the third line we exploit that a sum-
mation over all N-electron KS determinants that do
not contain the KS orbital ¢; equals a summation over all
N+ 1-electron KS determinants that do contain the KS orbital
¢; because the addition of an electron in the orbital ¢,
to an N-electron KS determinant not containing ¢; leads
to an (N+1)-electron KS determinant containing orbital
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¢; and because vice versa the removal of an electron in
the orbital ¢; from an (N+1)-electron KS determinant con-
taining ¢; leads to an N-electron KS determinant not con-
taining orbital ¢;. Furthermore the energy of the considered
pairs of N- and (N+1)-electron determinants differs by the
eigenvalues ¢; of the orbital ¢, The forth line of Eq. (Al)
follows from a simple change of the summation variable.
The forth and the fifth line differ by the summation term for
N=1 only. This term equals l/ZfTS’T!M, the inverse of the

expl (= VKT)(E}S, = uN)]

8ij= E 2 7KS
N=2

PHYSICAL REVIEW B 81, 155119 (2010)

grand partition function (6), and approaches zero for a large
average electron number N as it occurs in the treatment of a
solid if a large enough number of k points and/or a large
enough unit cell is taken into account and the chemical po-
tential w is adjusted such that the solid is neutral. Rearrange-
ment of Eq. (A1) leads to expression (28) for the occupation
numbers f;.

The occupation numbers g;; of pairs of KS orbitals are
given by

n US,T,,u,
ie<I>N,n
jE(I)N,n
% expl(- l/kT)(EKS,, — uN)] * expl(- l/kT)(EKSn - uN)] » expl(~ l/kT)(EKSn — uN)]
=1_2 2 KSN _E E KSN +E 2 KSN
R ZUX’T’M N ZUS’T*:” N=1 =n ZvSvT,,U«
i$‘bN,n j¢q>an i¢(DNyn
JEPN,
G 5 SXpLl= UKT)(ERS, - )]
=fivfi-1+ 2 2 :
! N=1 n ZijT,p,
ig¢®y,
jePy,
S expl(= VAT)(Eyiy, = (N +2))]
=fi+fi—-1+ VKD e N 3
j N=l A
ie®yir,
jE(I)N+2.iz
o 5 SXpll= UT)(ERS, — )]
=fi+fi—-1+ e(l/kT)(Sﬁaz—#—#)E E i
' i 5,
ieCDNM
jEd)N,n
. exp[(= 1/AT)(EXS — uN
~fi+fi—-1+ WD o) ' N pl( ZK)S( N~ #N)] —fia -1+ e(l/kT)(8i+£,-—M—M)gij. (A2)
N=2 n o T
I'E(I)N‘n
jE(DN,n

In the step from the second to the third line of Eq. (A2) we
add and subtract one and use the third line of Eq. (Al). The
fifth and sixth line of Eq. (A2) differ by the summation term
for N=2 that again equals 1/ foT! . the inverse of the grand
partition function (6) and apprc;aches zero for large enough
electron numbers as they are encountered in the treatment of
solids.

Rearrangement of Eq. (A2) leads to

fitfi—-1
8ij= 1 — oKD erep—p) =fif;.

(A3)

The occupation numbers g;; of pairs of KS orbitals thus are
just given by the product of the occupation numbers f; and f;
of the KS orbitals i and ;.

With Eq. (A3) expression (32) for the sum of Coulomb
and exchange energy assumes the form

U+E= (122 2 fif [(flid - jlin)]

= (1/2)f drdr’% - (U2 2 2 fif i,
toJ

(A4)

which suggests to define the Coulomb and exchange energies
individually as
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U= 1/2)fd Jr ,Po( r)po(r’) (A5)

r—r'|
and

E = (=122 X fif Sijlii), (A6)
i

respectively. The evaluation of the Coulomb and exchange
energy via Egs. (AS5) and (A6) is straightforward and just
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requires a simple generalization of whatever procedure is
used to calculate Coulomb and exchange energy in a ground
state EXX approach.

The expressions for the occupation numbers g;; and for
the Coulomb and exchange energy given in Egs. (A3), (A5),
and (A6) are those that are suggested by naive guess. How-
ever, it seems preferable to give the expressions a firm for-
mal basis by deriving them starting from the basic finite-
temperature KS formalism.
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